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Champs-sur-Marne, 77454 Marne-la-Vallée, France

{chaari,pesquet}@univ-mlv.fr
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ABSTRACT

To reduce the scanning time in some MRI applications, parallel ac-
quisition techniques with multiple coils have been developed. Then,
the full Field of View (FOV) image is reconstructed from the re-
sulting registred subsampled k-space data. To this end, several re-
construction techniques have been proposed such as the widely-used
SENSE method. However, the reconstructed image generally presents
artifacts especially when perturbations occur in both the measured
data and in the estimated coil sensitivity maps. In order to alleviate
such shortcomings by limiting the distortions, Tikhonov regulariza-
tion in the image domain has also been investigated. In this paper,
we present a novel algorithm for SENSE reconstruction which pro-
ceeds with regularization in the wavelet domain, the hyperparame-
ters being estimated from the data. Experiments carried out on real
T1-weighted MRI data at 1.5 T indicate that the proposed algorithm
generates reconstructed images with reduced artifacts in comparison
with conventional reconstruction techniques.

Index Terms— SENSE, pMRI, reconstruction, wavelets, regu-
larization, Bayesian approaches, convex optimization.

1. INTRODUCTION

Speeding up the MRI data acquisition is of main interest for studying
the brain dynamics in (almost) real-time. To this purpose, parallel
imaging has been developed: multiple receiver surface coils located
around the underlying object are employed to simultaneously col-
lect in the frequency domain (i.e the k-space) data sampled at a rate
R times lower than the Nyquist sampling rate. Therefore, the total
acquisition time is R times shorter than with conventional non par-
allel imaging. Then, a reconstruction step is performed to build a
full FOV image from the subsampled ones by suppressing aliasing
distortions. Several reconstruction methods like SMASH (Simulta-
neous acquisition of spatial harmonics) [1] and SENSE (Sensitivity
Encoding) [2] have been developed in order to unfold the aliased
registred images in the k-space and in the image domain, respec-
tively. For instance, the widely-used SENSE technique amounts to a
weighted least squares estimation in the image domain. Ideally, this
method is supposed to achieve an exact reconstruction in the absence
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of noise. However, in practice, noisy data and inaccuracies in the
coil sensitivity maps make the reconstruction task an ill-conditioned
problem. Some alternatives have been proposed. The coil geometry
can be optimized [3] and an improved estimation of coil sensitivity
profiles can also be performed [4]. However, much attention was
paid to regularization techniques in the reconstruction process [5, 6].
Most of them operate in the image domain.

Using a 1.5 T magnetic field, high reduction factors like R = 4
are considered as unfeasible since the reconstructed images are af-
fected by severe aliasing artifacts. The objective of this work is to
develop a regularized reconstruction technique in the wavelet do-
main that reduces these artifacts for high reduction factors and low
magnetic field intensity. We will further show that this choice has
been motivated by a tractable statistical modelling and a fast opti-
mization procedure.
This paper is organized as follows. In Section 2, we give a brief
overview of the SENSE method and its regularized version in the
data domain. Section 3 is devoted to a detailed description of the pro-
posed wavelet-based regularization procedure. Our approach is illus-
trated on T1-weighted anatomical data and results are commented in
Section 4. Finally, some conclusions and perspectives concerning
functional MRI data are drawn in Section 5.

2. BACKGROUND

2.1. Basic SENSE reconstruction

An array of L coils is employed to measure the spin density ρ into
the object under investigation. The signal dl received by each coil
l (1 ≤ l ≤ L) is the Fourier transform of the desired image func-

tion ρ weighted by the coil sensitivity profile sl evaluated at some �k
locations in the k-space which are defined by the sampling scheme:

dl(�k) =

∫
ρ(�r)sl(�r)e

−ı2π�kT�rd�r. (1)

For the sake of simplicity, the Cartesian sampling is retained. Due
to the separability of the Fourier transform, the problem amounts
to a one-dimensional inversion along the phase encoding axis. Let
Δx = R

X
be the sampling period with X the size of the FOV along

the phase encoding direction, let x be the position in the image do-
main and R ≤ L the reduction factor. By accounting for the under-
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sampling of the k-space by R, Eq. (1) admits the following matrix
form:

�d(x) = S(x)�ρ(x) (2)

where

S(x)
�
=

⎛
⎜⎝

s1(x) . . . s1(x + (R − 1)Δx)
...

...
...

sL(x) . . . sL(x + (R − 1)Δx)

⎞
⎟⎠ ,

�ρ(x)
�
=

⎛
⎜⎜⎜⎝

ρ(x)
ρ(x + Δx)

...
ρ(x + (R − 1)Δx)

⎞
⎟⎟⎟⎠and �d(x)

�
=

⎛
⎜⎜⎜⎝

d1(x)
d2(x)

...
dL(x)

⎞
⎟⎟⎟⎠ .

As a consequence, the reconstruction step consists of recovering

�ρ(x) from �d(x) at each voxel position indexed by x. Note that the
data fields (dl)1≤l≤L and the unknown image ρ are complex-valued,
although |ρ| is only considered for visualization purposes.

A simple reconstruction method is the SENSE approach, based
on the conventional least squares estimator [2]. The objective is to

find the vector �̂ρLS(x) that minimizes the residual least squares cri-
terion weighted by the inverse of the between-coil noise covariance
matrix Ψ of size L × L:

�̂ρLS(x) = arg min
�ρ(x)

‖ �d(x) − S(x)�ρ(x) ‖2
Ψ−1

=
(
SH(x)Ψ−1S(x)

)−1
SH(x)�d(x), (3)

where (·)H stands for the transposed complex conjugate. In practice,
several limitations drastically limit the performance of the SENSE
method because of the presence of distortions in the measurements
�d(x) and in the estimation of S(x). These undesirable effects are il-
lustrated in Fig. 1 which shows aliasing artifacts in the reconstructed
images for two reduction factors: R = 2 and R = 4. To address this
ill-conditioned problem, regularization is usually applied.

2.2. Tikhonov regularization

The Tikhonov regularization framework is usually considered by de-

termining �̂ρreg(x) as the minimizer of the penalized criterion:

Jreg(�ρ(x)) =‖ �d(x)−S(x)�ρ(x)‖2
Ψ−1 +μ ‖�ρ(x)−�ρr(x)‖2 . (4)

The regularization parameter μ > 0 ensures a balance between the
closeness to the data and the penalty term which controls the devia-

tion with respect to a reference vector �ρr(x). The solution �̂ρreg(x)
admits the following closed-form expression:

�̂ρreg(x) = �ρr(x) +
(
SH(x)Ψ−1S(x) + μIR

)−1
SH(x)Ψ−1

×(
�d(x) − S(x)�ρr(x)

)
,

(5)
where IR is the R-dimensional identity matrix. It is worth noticing
that any quadratic regularization procedure introduces blurring ef-
fects except for specific values of μ (see Fig. 4 (left)). To overcome
this limitation, one usually resorts to edge-preserving penalty terms.
Here, we propose to apply edge-preserving penalty in the Wavelet
Transform (WT) domain [7].

3. REGULARIZATION IN THE WT DOMAIN

3.1. Motivation

When carefully analyzing SENSE-based reconstructed images (see
Fig. 1 for R = 4), artifacts appear as distorted curves with either
very high or very low intensity, well spatially-localized. Conse-
quently, we propose to look for an image representation where these
localized transitions can be easily detected and hence attenuated. In
this respect, the WT has been recognized as a powerful tool that en-
ables a good space and frequency localization. In addition, as we
will show, the statistics of the wavelet coefficients can also be easily
modelled allowing us to efficiently employ a Bayesian framework
for the estimation procedure.

3.2. Optimization criterion

In what follows, T stands for the WT operator. It corresponds to
a discrete decomposition onto a separable 2D orthonormal wavelet
basis performed over jmax resolution levels. In this context, we
define the resulting wavelet coefficient field of the target image ρ
by ζ =

(
(ζa,m)m, (ζh,j,m, ζv,j,m, ζd,j,m)1≤j≤jmax,m

)
where ζa,m

denotes an approximation coefficient at resolution level jmax and lo-
cation m and ζo,j,m with o ∈ {h, v, d} denotes a detail coefficient
at resolution level j, location m and orientation o, which may be
horizontal (h), vertical (v) or diagonal (d). We aim at building an

estimate ζ̂ of ζ from �d. Then, an estimate of the objective image is

easily derived by just applying the inverse WT operator T∗ to ζ̂. For
the sake of mathematical convenience, the maximum a posteriori
(MAP) estimator is retained as solution:

ζ̂ = arg max
ζ

[
ln g(�d | T∗ζ) + ln f(ζ)

]
, (6)

where g(�d | T∗ζ) is the likelihood of the observed data and f(ζ)
is the prior probability density function of the image in the wavelet
domain. Assuming an i.i.d Gaussian vector noise in the imaging
process, the likelihood can be expressed as:

g(�d | ρ) ∝ exp (−G(ρ)) (7)

where G(ρ) = 1
2

∑
x ‖ �d(x) − S(x)�ρ(x) ‖2

Ψ−1 .
By analyzing the empirical distribution of the real and imaginary

parts of the considered detail coefficients, it is observed that their his-
tograms are well-fitted by generalized Gaussian distributions. The
corresponding probability density function fp,α depends on a shape
exponent p ∈ [1,∞[ and a scale parameter α ∈ R

∗
+:

∀ξ ∈ R, fp,α(ξ) =
p

2α1/pΓ( 1
p
)
e−

|ξ|p
α . (8)

At the coarsest resolution level, the distributions of both the real and
imaginary parts of the approximation coefficients can be modelled
by a Gaussian distribution with mean μ and variance σ2. Further-
more, we have found very low values of the correlation factors be-
tween the real and imaginary parts of the wavelet coefficients. This
allows us to assume that the real and imaginary parts of wavelet co-
efficients are independent. For the sake of simplicity, we also as-
sume that the real (resp. imaginary) parts of the wavelet coefficients
form an independent sequence and they are identically distributed in
each subband. So the MAP estimator is obtained as the minimizer
of J = J1 + J2 where J1(ζ) = G(T∗ζ) and

J2(ζ) =
∑
m

Φa(ζa,m) +

jmax∑
j=1

∑
o∈{h,v,d}

∑
m

Φo,j(ζo,j,m)
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where

Φa(ζa,m) =
(Re(ζa,m) − μRe)2

2σ2
Re

+
(Im(ζa,m) − μIm)2

2σ2
Im

Φo,j(ζo,j,m) =
|Re(ζo,j,m)|pRe

j,o

αRe
j,o

+
|Im(ζo,j,m)|pIm

j,o

αIm
j,o

with (pRe
j,o, p

Im
j,o) ∈ [1,∞[2 and (αRe

j,o, α
Re
j,o) ∈ (R∗

+)2. Hereabove,

Re(·) and Im(·) (or ·Re and ·Im) respectively stand for the real and
imaginary parts. In this context, the optimization procedure cannot
rely on conventional convex optimization algorithms: although J1

is differentiable with a Lipschitz-continuous gradient, J2 is not even
guaranteed to be differentiable. Therefore, we propose to apply the
iterative optimization procedure developed in [8], which is a gener-
alization of the previous work in [9].

3.3. Optimization algorithm

The goal of our algorithm is to iteratively compute a field of coeffi-

cients ζ̂ that minimizes J . For doing so, we will use the concept of
proximity operator which was found to be fundamental in a number
of recent works in convex optimization [10, 8] . In particular, the
proximity operator of the function φ : R → R , ξ 	→ |ξ|p/α with
p ∈ [1,∞[ and α ∈ R

∗
+ is:

• if p = 1, the soft thresholding operator defined by proxφ(ξ) =

sign(ξ)max{|ξ| − α−1, 0};

• if p 
= 1, proxφ(ξ) = sign(ξ)η where η is the unique solu-

tion in [0, +∞[ to η + pηp−1/α = |ξ|.
We extend the definition of proximity operation to functions defined
on conplex-valued objects. For Φ : C → R , ξ 	→ φRe(Re(ξ)) +
φIm(Im(ξ)), where φRe and φIm are convex functions of the same
form as φ above, the proximity operator is defined as proxΦ(ξ) =
proxφRe(Re(ξ)) + ıproxφIm(Im(ξ)). The functions Φo,j and Φa

defined in the previous section are typically of the form of interest.
By extension to the complex case of the algorithm in [8], a min-

imizer of J can then be computed iteratively by setting, for every
iteration n ∈ N:

ζ
(n+1)
o,j,m = ζ

(n)
o,j,m

+ λn

(
proxγnΦo,j

(ζ
(n)
o,j,m − γn[∇J1(ζ(n))]o,j,m) − ζ

(n)
o,j,m

)
(9)

(a similar equation is used to update ζ
(n)
a,m), where a closed-form ex-

pression of [∇J1]o,j,m = ∂J1
∂Re(ζo,j,m)

+ ı ∂J1
∂Im(ζo,j,m)

can easily be

computed where λn ∈]0, 1] and γn ∈]0, γmax[ are respectively re-
laxation and step-size parameters (2/γmax is the Lipschitz constant
of ∇J1). Results obtained with this iterative method are provided
and discussed in the next section.

4. RESULTS

Experiments have been conducted on real data sets containing 256×
256×14 T1-weighted anatomical images with 0.93×0.93×8 (mm)
spatial resolution and a reduction factor R = 4. These images have
been acquired with Signa 1.5 Tesla GE Healthcare scanner using an
eight-channel head coil (L = 8). The illustrated reconstructed im-
ages correspond to the 14th slice which is the most distorted one.
We have used the Symlet 8 wavelet basis over 1, 2 or 3 resolution
levels. The maximum likelihood estimator has been used to esti-
mate all the hyper-parameters for the distributions of the real and

imaginary parts of the approximation/detail coefficients. Fig. 2 il-
lustrates the evolution of the optimization criterion with respect to
the iteration number n when jmax = 1, 2 and 3. It can be consid-
ered that, after about 80 iterations, the minimum has been reached.
We are guaranteed that it corresponds to the optimal MAP solution.
Using a reference image ρref calculated with R = 2 and the re-
constructed image ρrec, Fig. 3 provides the Signal to Noise Ratio

(SNR=20 log10
||ρref ||2

||ρref−ρrec||2 ) variation with respect to the iteration

number for the same range of resolution levels. We note that the
SNR increases with the number of resolution levels. Fig. 4 allows
us to evaluate the difference between the image reconstruction using
Tikhonov regularization (left) (SNR = 14 dB) and the proposed
WT algorithm (right) (SNR = 14.5 dB). The comparison with
the basic-SENSE reconstructed image can be made by referring to
Fig. 1 (right) (SNR = 13.9 dB). Note that blurring effects in the
Tikhonov regularized image are no longer present in the WT regu-
larized image. Moreover, the aliasing artifacts in the basic-SENSE
reconstructed image are significantly smoothed with the proposed
wavelet-based approach but they are completely removed only if
they were not actually very strong. Fig. 5 displays the difference
images between the reconstructed images at different resolution lev-
els. It is clear that, by increasing the number of resolution levels, our
algorithm converges faster while getting an improved reconstruction
quality. However, slight improvements only are noticeable beyond 3
resolution levels.

5. CONCLUSION

We have proposed a novel Bayesian approach for SENSE recon-
struction based on a regularization in a 2D orthonormal wavelet ba-
sis. This method reduces aliasing artifacts related to the noise in the
acquired data, which become critical when using high reduction fac-
tors with low magnetic field intensity. Results show improvements
in the reconstructed images compared with basic SENSE and some
other regularization methods. The considered method can be adapted
to functional MRI data, possibly taken into account time dependen-
cies.
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Fig. 1. White arrows indicate the aliasing artifacts in the recon-
structed image using the basic SENSE algorithm with R = 2 (left)
and R = 4 (right).
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Fig. 2. Variation of the optimization criterion J w.r.t. iteration num-
ber n for jmax ∈ {1, 2, 3} (λn = 0.1 and γn = 0.7).
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Fig. 3. Variation of SNR in dB w.r.t. iteration number n for jmax ∈
{1, 2, 3} (λn = 0.1 and γn = 0.7).

Fig. 4. Reconstructed image using Tikhonov regularization (left) and
WT regularization (right) with R = 4.
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Fig. 5. Difference between images reconstructed at different resolu-
tion levels
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